Add like
Add dislike
Add to saved papers

Reduction of Imidacloprid by Sponge Iron and Identification of its Degradation Products.

  In this study, imidacloprid was degraded by sponge iron in aqueous solution via chemical reduction. The effects of initial pH, reaction time, and operating model were investigated. Lower of pH was advantageous to the reduction degradation reaction. The influence of agitation was investigated in terms of reaction kinetics and degradation yield. Imidacloprid degradation with agitation showed first-order reaction kinetics with a reaction rate of 0.0235 min-1 , and degradation without agitation possessed two distinctive kinetics regimes; a rapid reduction in the initial stage and a slower process until removal was complete. Both stages of the degradation showed first-order reaction kinetics with reaction rates of 0.0122 min-1 and 0.0030 min-1 , respectively. Transformation products were identified using high-performance liquid chromatography-mass spectrometry (HPLC-MS). HPLC-MS exhibited nine fragment ions at m/z 97, 155.9, 174.9, 196.9, 211.1, 269.9, 266.1, 279, and 301.1. Finally, a degradation pathway of imidacloprid was proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app