Add like
Add dislike
Add to saved papers

Interaction of DGAT1 and PDAT1 to enhance TAG assembly in Arabidopsis.

Seeds contain a large quantity of oils, which are mainly constituted of triacylglycerol (TAG), a fundamental source of carbon and energy. TAG biosynthesis is catalyzed by a series of multiple enzymes. In particular, two key enzymes catalyzing the last acylation step for TAG production, acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1), are rate-limiting enzymes that determine TAG accumulation in Arabidopsis seeds. We recently showed that the two enzymes are transcriptionally coordinated by the R2R3-type MYB96 transcription factor to promote TAG assembly during seed maturation in Arabidopsis. Here, we further found that DGAT1 and PDAT1 physically associate, possibly to enhance the efficiency of TAG production. Overall, our findings suggest that TAG biosynthesis is intricately regulated at multiple levels, and these molecular strategies can potentially be used for metabolic engineering in plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app