Add like
Add dislike
Add to saved papers

Cumulus-oocyte interactions and programmed cell death in bovine embryos produced in vitro.

Theriogenology 2018 November 27
This study investigated the interactions between cumulus cells (CCs) and oocytes and programmed cell death in bovine cumulus-oocyte complexes (COCs) with different morphological characteristics. DNA fragmentation was assessed in CCs at 0 and 24 h of maturation, as well as parthenogenetic developmental competence on the 9th day post-activation, blastocyst quality and BCL-2 and BAX transcript levels in matured CCs. Most immature oocytes in the COC-A group (full cumulus and several compact layers) were in the initial germinal vesicle (iGV) stage, exhibiting minimal or no DNA damage. In contrast, after follicle removal, the COCB (partial cumulus and one or two cell layers) and C (expanded cumulus) groups presented in more advanced GV stages and exhibited DNA fragmentation. After maturation, significant increases in fragmented nuclei were noted in COCC and COCB groups. Embryos resulting from the COC-A developed more rapidly and had increased competence compared to embryos resulting from groups COCB and COCC. The COCB group exhibited the highest BAX protein levels and a reduced BCL-2/BAX protein ratio. The results show a negative correlation between nuclear fragmentation and embryonic development potential in COCs with different morphologies. In addition, a low BCL-2/BAX protein ratio might be associated with an increase in nuclear fragmentation in CCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app