Add like
Add dislike
Add to saved papers

Biopolymers - Calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering.

Composites based on combination of biopolymers (chitosan, hyaluronic acid and bovine serum albumin or gelatin), calcium phosphates (CP) and magnetic nanoparticles have been prepared by a biomimetic co-precipitation method. The biomimetic strategy is inspired by natural mineralization processes, where the synthesized minerals are usually combined with proteins, polysaccharides or other mineral forms to form composite, in physiological conditions of temperature and pH. The morphology of the magnetic composites, studied using scanning electron microscopy (SEM) indicated a macroporous structure, which influenced the retention of simulated biological fluids. Fourier transformed infrared spectroscopy and X-ray diffraction and Energy-dispersive X-ray spectroscopy (EDX) confirmed the composition of the scaffolds and the formation of various types of calcium phosphates with amorphous nature. The in vitro degradation studies showed a slow degradation process for magnetic composites that confirmed the tightly connection of the polymeric matrix with calcium phosphates, which limits the enzyme access to the degradable components and material disintegration. The magnetic scaffolds exhibited no negative effect on osteoblasts cell, emphasizing a good biocompatibility. Considering the scaffolds properties, some compositions based on calcium phosphates, chitosan, Hya/Bsa and more than 3% of MNPs are recommended for further optimization and in vivo tests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app