Add like
Add dislike
Add to saved papers

Therapeutic potential of nvp-bkm120 in human osteosarcomas cells.

Osteosarcoma (OS) is the most common pediatric malignant neoplasia of the skeletal system. It is characterized by a high degree of malignancy and a severe tendency to metastasize. In the past decade, many studies have provided evidence that the phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently altered pathways in human cancer, and has a critical role in driving tumor initiation and progression. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120, which has recently entered clinical Phase II for treatment of PI3K-dependent cancers on three OS cell lines. We observed a concentration- and time-dependent decrease of Ser473 p-Akt as well as reduced levels of Thr37/46 p-4E-BP1, an indicator of the mammalian target of rapamycin complex 1 activity. All OS cell lines used in this study responded to BKM120 treatment with an arrest of cell proliferation, an increase in cell mortality, and an increase in caspase-3 activity. MG-63 cells were the most responsive cell line, demonstrating a significant increase in sub-G1 cells, and a rapid induction of cell death. Furthermore, we demonstrate that BKM120 is more effective when used in combination with other standard chemotherapeutic drugs. Combining BKM120 with vincristine demonstrated a more synergistic effect than BKM120 with doxorubicin in all the lines. Hence, we suggest that BKM120 may be a novel therapy for the treatment of OS presenting with anomalous upregulation of the PI3K signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app