Add like
Add dislike
Add to saved papers

An Oxygen-Vacancy-Rich Semiconductor-Supported Bifunctional Catalyst for Efficient and Stable Zinc-Air Batteries.

Advanced Materials 2018 December 10
The highly oxidative operating conditions of rechargeable zinc-air batteries causes significant carbon-support corrosion of bifunctional oxygen electrocatalysts. Here, a new strategy for the catalyst support design focusing on oxygen vacancy (OV)-rich, low-bandgap semiconductor is proposed. The OVs promote the electrical conductivity of the oxide support, and at the same time offer a strong metal-support interaction (SMSI), which enables the catalysts to have small metal size, high catalytic activity, and high stability. The strategy is demonstrated by successfully synthesizing ultrafine Co-metal-decorated 3D ordered macroporous titanium oxynitride (3DOM-Co@TiOx Ny ). The 3DOM-Co@TiOx Ny catalyst exhibits comparable activities for oxygen reduction and evolution reactions, but much higher cycling stability than noble metals in alkaline conditions. The zinc-air battery using this catalyst delivers an excellent stability with less than 1% energy efficiency loss over 900 charge-discharge cycles at 20 mA cm-2 . The high stability is attributed to the strong SMSI between Co and 3DOM-TiOx Ny which is verified by density functional theory calculations. This work sheds light on using OV-rich semiconductors as a promising support to design efficient and durable nonprecious electrocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app