Add like
Add dislike
Add to saved papers

Suppression of TLR4 by miR-448 is involved in Diabetic development via regulating Macrophage polarization.

OBJECTIVES: Lipopolysaccharide (LPS) contributed to the development and progression of type 2 diabetes mellitus (T2D), while TLR4 is reported to mediate the LPS-induced inflammation in macrophages. However, the potential molecular mechanisms for TLR4-mediated macrophages activation in T2D have not yet to be fully clarified.

METHODS: Type 2 diabetes models in C57BL/6J mice were generated by a combination administration of streptozotocin (STZ) and a high-fat diet (HFD). Cell proportions of M1 and M2 macrophages were analyzed using flow cytometry. Expression profiles of miR-448 and TLR 4 were determined by qRT-PCR and Western blot.

KEY FINDINGS: LPS/IFN-γ significantly induced M1 polarization in macrophages characterized by the increased levels of TNF-α, IL-6, IL-12, iNOS and decreased levels of TNF-β, CCL-22, IL-10 and Arg-1, with a higher expression of toll-like receptor 4 (TLR4) in vitro. Consistently, T2D mice-derived macrophages had a significantly elevated expression of TLR4 mRNA and decreased expression of miR-448. We further confirmed that miR-448 could inhibit TLR4 expression by targeting the 3'-UTR of TLR4, rescuing the LPS/IFN-γ-induced M1 macrophage polarization.

CONCLUSIONS: Taken together, our results indicated that decreased miR-448 in diabetic macrophages may contribute to LPS-induced M1 polarization by targeting TLR4, thereby modulating T2D development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app