Add like
Add dislike
Add to saved papers

Quantification of the Interactions Between BCL-2 Proteins by Fluorescence Correlation Spectroscopy.

The proteins of the Bcl-2 family regulate apoptosis by forming a complex interaction network whose output determines whether mitochondrial outer membrane permeabilization is executed. Quantification of complex formation between Bcl-2 proteins in solution and in membranes is therefore key to understand how the hierarchy of interactions controls cell death induction. Fluorescence correlation spectroscopy (FCS) is a noninvasive, nondestructive method to investigate the mobility and the association of fluorescently labeled biomolecules that has provided useful insight into the binding affinity of the Bcl-2 interactome. FCS is based on the detection of fluorescence fluctuations caused by the diffusion of individual molecules through a very tiny observation volume of the detection system. Scanning FCS (SFCS) solves some of the practical challenges of acquiring FCS in membranes and expands the application scope of the method. In this chapter, we explain the principle of FCS and describe protocols how it can be used to quantify interactions between Bcl-2 proteins in solution and in model membrane systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app