Add like
Add dislike
Add to saved papers

The comparison of biocompatibility and osteoinductivity between multi-walled and single-walled carbon nanotube/PHBV composites.

The applications of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in tissue engineering have been widely studied. This study aimed to compare the biocompatibility and osteoinductivity of single-walled carbon nanotubes (SWCNTs)/PHBV composites with multi-walled CNTs (MWCNTs)/PHBV composites. CNTs were dispersed in PHBV by ultrasonication and composites were created using thermal injection moulding. In order to test their biocompatibility and osteoinductivity. Rat osteoblasts (rOBs) were then cultured and seeded on the composites. The composites were implanted in rat femoral bone defects. Our results showed that lower weight percentages of SWCNTs and MWCNTs (2-4%) improved both their mechanical and thermal decomposition properties. However, further reduction of rOBs cell death was observed in MWCNTs/PHBV. SWCNTs were shown to upregulate the expression of Runx-2 and Bmp-2 in early stage significantly, while MWCNTs showed a stronger long-term effect on Opn and Ocn. The in vivo result was that MWCNTs/PHBV composites induced intact rounding new bone, increased integration with new bone, and earlier completed bone remodeling when compared with SWCNTs. Immunohistochemistry also detected higher expression of RUNX-2 around MWCNTs/PHBV composites. In conclusion, there were no differences observed between SWCNTs and MWCNTs in the reinforcement of PHBV, while MWCNTs/PHBV composites showed better biocompatibility and osteoinductivity both in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app