Add like
Add dislike
Add to saved papers

Kidney toxicity and response of selenium containing protein-glutathione peroxidase (Gpx3) to CdTe QDs on different levels.

The toxic mechanism of cadmium-quantum dot (Cd-QDs) to organisms is still debating. In this paper, it was found that Cd-QDs could induce adverse effects to kidney by entering into cells in a time and dose manner and disturbing the redox balance in vivo. As a selenium containing protein, glutathione peroxidase3 (Gpx3) plays a crucial role in maintaining the balance of redox system. The decrease of Gpx3 activity might be related to the imbalance of redox system. Similar to the animal results, it was demonstrated that Gpx3 activity is also inhibited by Cd-QDs in vitro. To investigate the underlying mechanism of Cd-QDs on conformational and functional changes of Gpx3, systematical measurements including calorimetric, multi-spectroscopic studies and molecular model studies were carried out on molecular level. Results showed that Cd-QDs binds to Gpx3 via Van der Waals' force and hydrogen bonds, resulting in structural changes with increasing contents of α-helix. By interacting with Glu136 in the cavity of Gpx3 as well as Phe132, Pro130 and Van129 surrounded, Cd-QDs changes the micro-environment of fluorophore and further reduce the activity of Gpx3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app