Add like
Add dislike
Add to saved papers

Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis.

Annals of Botany 2018 December 11
Background and Aims: Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3-) or ammonium (NH4+). Recent studies revealed that NO3- nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3- or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions.

Methods : We used Arabidopsis plants grown on Hoagland medium with either NO3- or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin-nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription-PCR methods.

Key Results : Under NO3- nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3- nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3- nutrition.

Conclusions: The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app