Add like
Add dislike
Add to saved papers

Lack of the pH-sensing Receptor TDAG8 [GPR65] in Macrophages Plays a Detrimental Role in Murine Models of Inflammatory Bowel Disease.

Background: Tissue inflammation in inflammatory bowel diseases [IBD] is associated with local acidification. Genetic variants in the pH-sensing G protein-coupled receptor 65, also known as T cell death-associated gene 8 [TDAG8], have been implicated in IBD and other autoimmune diseases. Since the role of TDAG8 in intestinal inflammation remains unclear, we investigated the function of TDAG8 using murine colitis models.

Methods: The effects of TDAG8 deficiency were assessed in dextran sodium sulphate [DSS], IL-10-/-, and T cell transfer colitis murine models. RNA sequencing of acidosis-activated TDAG8-/- and wild-type [WT] peritoneal macrophages [MΦs] was performed.

Results: mRNA expression of IFN-γ, TNF, IL-6, and iNOS in TDAG8-/- mice increased significantly in colonic lymphoid patches and in colonic tissue in acute and chronic DSS colitis, respectively. In transfer colitis, there was a trend towards increased IFN-γ, iNOS, and IL-6 expression in mice receiving TDAG8-/- T cells. However, absence of TDAG8 did not lead to changes in clinical scores in the models tested. Increased numbers of infiltrating MΦs and neutrophils, but not CD3+ T cells, were observed in DSS-treated TDAG8-/- mice. No differences in infiltrating CD3+ T cells were observed between mice receiving TDAG8-/- or WT naïve T cells in transfer colitis. RNA sequencing showed that acidosis activation of TDAG8 in MΦs modulated the expression of immune response genes.

Conclusions: TDAG8 deficiency triggers colonic MΦ and neutrophil infiltration, and expression of pro-inflammatory mediators in DSS colitis models. In transfer colitis, mice receiving TDAG8-/- T cells presented a significantly higher spleen weight and a tendency towards increased expression of pro-inflammatory markers of monocyte/MΦ activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app