Add like
Add dislike
Add to saved papers

Improving Prediction of Protein Secondary Structure, Backbone Angles, Solvent Accessibility, and Contact Numbers by Using Predicted Contact Maps and an Ensemble of Recurrent and Residual Convolutional Neural Networks.

Bioinformatics 2018 December 8
Motivation: Sequence-based prediction of one dimensional structural properties of proteins has been a long-standing subproblem of protein structure prediction. Recently, prediction accuracy has been significantly improved due to the rapid expansion of protein sequence and structure libraries and advances in deep learning techniques, such as residual convolutional networks (ResNets) and Long-Short-Term Memory Cells in Bidirectional Recurrent Neural Networks (LSTM-BRNNs). Here we leverage an ensemble of LSTM-BRNN and ResNet models, together with predicted residue-residue contact maps, to continue the push towards the attainable limit of prediction for 3- and 8-state secondary structure, backbone angles (θ, τ, ϕ, and ψ), half-sphere exposure, contact numbers, and solvent accessible surface area (ASA).

Results: The new method, named SPOT-1D, achieves similar, high performance on a large validation set and test set (≈1000 proteins in each set), suggesting robust performance for unseen data. For the large test set, it achieves 87% and 77% in 3 and 8-state secondary structure prediction and 0.82 and 0.86 in correlation coefficients between predicted and measured ASA and contact numbers, respectively. Comparison to current state-of-the-art techniques reveals substantial improvement in secondary structure and backbone angle prediction. In particular, 44% of 40-residue fragment structures constructed from predicted backbone Cα-based θ and τ angles are less than 6Å root-mean-squared-distance from their native conformations, nearly 20% better than the next best. The method is expected to be useful for advancing protein structure and function prediction.

Availability: SPOT-1D and its data is available at: https://sparks-lab.org/.

Supplementary Information: Supplementary data is available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app