Add like
Add dislike
Add to saved papers

Mapping of QTL for chicken body weight, carcass composition, and meat quality traits in a slow-growing line.

Poultry Science 2018 December 8
Slow-growing chicken lines are valuable genetic resources for the development of well-perceived alternative free-range production. While there is no constraint on increasing growth rate, breeding programs have to evolve in order to include new traits improving the positioning of such lines in the growing market for parts and processed products. In this study, we used dense genotyping to fine map QTL for chicken growth, body composition, and meat quality traits in view of developing new tools for selection of a slow-growing line. The dataset included a total of 836 birds (10 sires, 87 dams, 739 descendants) and 40,203 SNP. QTL for the 15 traits analyzed were detected by 3 different methods, i.e., linkage and linkage disequilibrium haplotype-based analysis (LDLA), family-based single marker association (FASTA), and Bayesian multi-marker regression (Bayes Cπ). After filtering for QTL redundancy, we found 16, 16, and 9 QTL when using the FASTA, LDLA, and Bayes Cπ methods, respectively, with a threshold of 2.49 × 10-5 for FASTA and LDLA, and a Bayes factor of 150 for the Bayes Cπ analysis. They comprised 17 QTL for body weight, 9 QTL for body composition, and 15 QTL for breast meat quality or behavior at slaughter. The 3 methods agreed in the detection of highly significant QTL such as that detected on GGA24 for body weight at 3, 6, and 9 wk, and the 2 QTL detected on GGA17 and GGA18 for breast meat yield. Several significant QTL were also detected for the different components of breast meat quality. This study provided new locations for investigation in order to improve our understanding of the genetic architecture of growth, carcass composition, and meat quality in the chicken and to develop molecular tools for the selection of these traits in a slow-growing line.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app