Add like
Add dislike
Add to saved papers

Nutritional stress reprograms dedifferention in glioblastoma multiforme driven by PTEN/Wnt/Hedgehog axis: a stochastic model of cancer stem cells.

The emergence and maintenance of cancer stem-like cells (CSCs) are usually governed by tumor niche. Tumor niche always provides metabolic challenges to cancer cells and CSCs mostly because of tissue hypoxia. However, the role of micro-environmental nutritional stress (NS) in dedifferentiation of cancer cells is poorly defined. Here, we developed a stochastic model of CSCs by gradual nutritional deprivation in glioblastoma multiforme (GBM) cells used as a model system. Nutritional deprivation induced enhanced expression of glioblastoma stem-like cells (GSCs)-specific biomarkers with higher invasive and angiogenic properties. This NS-induced cells showed higher xenobiotic efflux ability, and hence exhibit resistance to multiple anticancer drugs. In the molecular level, such NS activated Wnt and Hedgehog (Hh) signaling pathways by stabilizing β-catenin and Gli1, respectively, through modulation of GSK3β/AKT axis. GBM-specific PTEN (phosphatase and tensin homolog) mutation contributed to better phenoconversion toward GSCs. Knocking down of PTEN coupled with NS induction enhanced neurosphere formation, GSC-specific biomarker expressions, and activation of Wnt/Hh signaling. Thus, such an in-depth understanding of dedifferentiation of GBM cells to GSCs under NS suggested that targeting Wnt/Hh signaling possibly be a better therapeutic approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app