Add like
Add dislike
Add to saved papers

Chemical renal artery denervation with appropriate phenol in spontaneously hypertensive rats.

Objective: To explore the effectiveness of renal denervation (RDN) on blood pressure with the appropriate dosage of phenol/ethanol solution in spontaneously hypertensive rats (SHRs).

Methods: RDN was performed on the bilateral renal artery. Forty SHRs were divided into four groups according on the dosage of phenol (10% phenol in absolute ethanol): sham group, 0.5 mL phenol group, 1 mL phenol group and 1.5 mL phenol group ( n = 10 in each group). Blood pressure was measured by tail-cuff plethysmography. Plasma creatinine was determined four weeks after the treatment. The kidneys and renal arteries were collected and processed for histological examination.

Results: A sustained decrease in systolic blood pressure (SBP) was only observed after the application of 1 mL phenol for four weeks, while SBP was lowered during the first week after RDN and increased in the following three weeks in the 0.5 mL and 1.5 mL phenol groups compared with the sham group. Renal norepinephrine (NE) was significantly decreased four weeks after RDN in the 1 mL and 1.5 mL phenol group compared with the sham group, but not in the 0.5 ml group. RDN with 1 mL phenol obviously reduced glomerular fibrosis. Histopathological analysis showed that tyrosine hydroxylase immunoreactivity was lower in the 1 mL and 1.5 mL phenol groups compared with the sham group. Moderate renal artery damage occurred in the 1.5 mL phenol group.

Conclusion: Chemical denervation with 1 ml phenol (10% phenol in absolute ethanol) effectively and safely damaged peripheral renal sympathetic nerves and contributed to the sustained reduction of blood pressure in SHRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app