Add like
Add dislike
Add to saved papers

PremPDI estimates and interprets the effects of missense mutations on protein-DNA interactions.

Protein-DNA interactions play important roles in regulations of many vital cellular processes, including transcription, translation, DNA replication and recombination. Sequence variants occurring in these DNA binding proteins that alter protein-DNA interactions may cause significant perturbations or complete abolishment of function, potentially leading to diseases. Developing a mechanistic understanding of impacts of variants on protein-DNA interactions becomes a persistent need. To address this need we introduce a new computational method PremPDI that predicts the effect of single missense mutation in the protein on the protein-DNA interaction and calculates the quantitative binding affinity change. The PremPDI method is based on molecular mechanics force fields and fast side-chain optimization algorithms with parameters optimized on experimental sets of 219 mutations from 49 protein-DNA complexes. PremPDI yields a very good agreement between predicted and experimental values with Pearson correlation coefficient of 0.71 and root-mean-square error of 0.86 kcal mol-1. The PremPDI server could map mutations on a structural protein-DNA complex, calculate the associated changes in binding affinity, determine the deleterious effect of a mutation, and produce a mutant structural model for download. PremPDI can be applied to many tasks, such as determination of potential damaging mutations in cancer and other diseases. PremPDI is available at https://lilab.jysw.suda.edu.cn/research/PremPDI/.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app