Add like
Add dislike
Add to saved papers

Mycobacterial glycolipid Di-O-acyl trehalose promotes a tolerogenic profile in dendritic cells.

Due to prolonged coevolution with the human being, Mycobacterium tuberculosis has acquired a sophisticated capacity to evade host immunity and persist in a latent state in the infected individual. As part of this evolutive process, mycobacteria have developed a highly complex cell wall that acts as a protective barrier. Herein we studied the effects of Di-O-acyl trehalose, a cell-wall glycolipid of virulent mycobacteria on murine bone marrow-derived dendritic cells. We have demonstrated that Di-O-Acyl-trehalose promotes a tolerogenic phenotype in bone marrow-derived murine DCs activated with mycobacterial antigens and Toll-like receptor agonists. This phenotype included low expression of antigen presentation and costimulatory molecules and altered cytokine production with downregulation of IL-12 and upregulation of IL-10, an anti-inflammatory cytokine. Additional markers of tolerogenicity were the expression of Indoleamine 2,3-dioxygenase and CD25. Furthermore, Di-O-Acyl-Trehalose promoted the expansion of FoxP3+ regulatory T lymphocytes. A better understanding of mycobacterial cell-wall components involved in the evasion of immunity is a prerequisite to designing better strategies to fight tuberculosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app