JOURNAL ARTICLE
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Invasive Hemodynamic Monitoring of Aortic and Pulmonary Artery Hemodynamics in a Large Animal Model of ARDS.

One of the leading causes of morbidity and mortality in patients with heart failure is right ventricular (RV) dysfunction, especially if it is due to pulmonary hypertension. For a better understanding and treatment of this disease, precise hemodynamic monitoring of left and right ventricular parameters is important. For this reason, it is essential to establish experimental pig models of cardiac hemodynamics and measurements for research purpose. This article shows the induction of ARDS by using oleic acid (OA) and consequent right ventricular dysfunction, as well as the instrumentation of the pigs and the data acquisition process that is needed to assess hemodynamic parameters. To achieve right ventricular dysfunction, we used oleic acid (OA) to cause ARDS and accompanied this with pulmonary artery hypertension (PAH). With this model of PAH and consecutive right ventricular dysfunction, many hemodynamic parameters can be measured, and right ventricular volume load can be detected. All vital parameters, including respiratory rate (RR), heart rate (HR) and body temperature were recorded throughout the whole experiment. Hemodynamic parameters including femoral artery pressure (FAP), aortic pressure (AP), right ventricular pressure (peak systolic, end systolic and end diastolic right ventricular pressure), central venous pressure (CVP), pulmonary artery pressure (PAP) and left arterial pressure (LAP) were measured as well as perfusion parameters including ascending aortic flow (AAF) and pulmonary artery flow (PAF). Hemodynamic measurements were performed using transcardiopulmonary thermodilution to provide cardiac output (CO). Furthermore, the PiCCO2 system (Pulse Contour Cardiac Output System 2) was used to receive parameters such as stroke volume variance (SVV), pulse pressure variance (PPV), as well as extravascular lung water (EVLW) and global end-diastolic volume (GEDV). Our monitoring procedure is suitable for detecting right ventricular dysfunction and monitoring hemodynamic findings before and after volume administration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app