Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Combined molecular dynamics and neural network method for predicting protein antifreeze activity.

Antifreeze proteins (AFPs) are a diverse class of proteins that depress the kinetically observable freezing point of water. AFPs have been of scientific interest for decades, but the lack of an accurate model for predicting AFP activity has hindered the logical design of novel antifreeze systems. To address this, we perform molecular dynamics simulation for a collection of well-studied AFPs. By analyzing both the dynamic behavior of water near the protein surface and the geometric structure of the protein, we introduce a method that automatically detects the ice binding face of AFPs. From these data, we construct a simple neural network that is capable of quantitatively predicting experimentally observed thermal hysteresis from a trio of relevant physical variables. The model's accuracy is tested against data for 17 known AFPs and 5 non-AFP controls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app