Add like
Add dislike
Add to saved papers

Cell segmentation using a similarity interface with a multi-task convolutional neural network.

Even though convolutional neural networks (CNN) have been used for cell segmentation, they require pixel-level ground truth annotations. This paper proposes a multi-task learning algorithm for cell detection and segmentation using CNNs. We use dot annotations placed inside each cell indicating approximate cell centroids to create training datasets for the detection and segmentation tasks. The segmentation task is used to map the input image to foreground vs background regions, whereas, the detection task is to used to predict the centroids of the cells. Our multi-task model shares convolutional layers between the two tasks, while having task-specific output layers. Learning two tasks simultaneously reduces the risks of overfitting, and also helps in separating overlapping cells better. We also introduce a similarity interface (SI) that can be integrated with our multitask network to allow easy adaptation between domains, and to compensate for the variability in contrast and texture of cells seen in microscopy images. The SI comprises an unsupervised first layer in combination with a neighborhood similarity layer (NSL). A layer of logistic sigmoid functions is used as an unsupervised first layer to separate clustered image patches from each other. The NSL transforms its input feature map at a given pixel by computing its similarity to the surrounding neighborhood. Our proposed method achieves higher/comparable detection and segmentation scores as compared to the recent state-of-the-art methods with significantly reduced effort for generating training data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app