JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Toward Electrical Impedance Tomography Coupled Ultrasound Imaging for Assessing Muscle Health.

This paper establishes for the first time that a coupled ultrasound (US) and electrical impedance tomography (EIT) system can serve as a non-invasive, spatially localized approach to extract clinically relevant muscle properties. The US/EIT system represents a potential enhancement to electrical impedance myography (EIM), which has shown promise as a non-invasive technology that may have important clinical use in indicating neuromuscular disease status and as a diagnostic tool. A 2.5D EIT algorithm evaluated on simulation, measured phantoms, and measured patient data was studied to evaluate US/EIT's ability to distinguish different aspects of muscle tissue. Simulated and phantom experiments revealed the depths of distinguishability of 3.2 and 4.2 mm in simulation for 10% and 20% changes in muscle properties, respectively, and 3.6 mm in measured phantom experiments assuming a 12% muscle conductivity change. Reconstructions from the patient data established that there were consistent differences 1) between longitudinal (along) and transverse (across) muscle conductivity reconstructions at frequencies of 40 and 80 kHz and 2) side-by-side comparison between healthy and diseased tissue in terms of conductivity, permittivity, and phase at 40 and 80 kHz. Comparisons were made between the EIT reconstructed values and electrical impedance spectroscopy (EIS) measurements (an available surrogate in place of standard EIM measurements) made with the US/EIT system, wherein 1) EIS and EIT show similar sensitivity to longitudinal and transverse differences and 2) EIT showed a more consistent ability to differentiate healthy and diseased tissue. These results suggest that US/EIT appears very promising for non-invasive and spatially localized diagnosis of muscle health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app