Add like
Add dislike
Add to saved papers

A novel operational strategy to enhance wastewater treatment with dual-anode assembled microbial desalination cell.

Bioelectrochemistry 2018 December 2
This study introduced a novel dual-anode assembled microbial desalination cell to enhance the performance of domestic wastewater treatment. Two parallel units were fabricated with two anodes and one cathode, which is separated by two ion exchange membrane stacks. A hollow fiber membrane module was inserted in the cathode to intercept suspended solids and microbes. Based on preliminary experiments where synthetic wastewater was utilized, anode hydraulic retention time of 10 h and cathode aeration rate of 0.16 m3 /h were chosen as the operating conditions. By innovatively connecting four membrane stacks in cascades, which multiplied flow rate without adding extra circulation pumps, the desalination rate of the system was improved 214.8% compared with single membrane stack mode. When modified domestic wastewater was applied, the average removal efficiencies of chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorous reached 96.9%, 99.0%, 98.0% and 98.3%, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app