Add like
Add dislike
Add to saved papers

Minocycline Attenuates Ethanol-induced Cell Death and Microglial Activation in the Developing Spinal Cord.

Alcohol 2018 December 8
Developmental exposure to ethanol may cause fetal alcohol spectrum disorders (FASD), and immature central nervous system (CNS) is particularly vulnerable to ethanol. In addition to the developing brain, we previously showed that ethanol also caused neuroapoptosis, microglial activation, and neuroinflammation in the spinal cord. Minocycline is an antibiotic that inhibits microglial activation and alleviates neuroinflammation. We sought to determine whether minocycline could protect spinal cord neurons against ethanol-induced damage. In this study, we showed that minocycline significantly inhibited ethanol-induced caspase-3 activation, microglial activation, and the expression of pro-inflammatory cytokines in the developing spinal cord. Moreover, minocycline blocked ethanol-induced activation of glycogen synthase kinase 3 beta (GSK3β) a key regulator of microglial activation. Meanwhile, minocycline significantly restored ethanol-induced inhibition of protein kinase B (AKT), mammalian target of the rapamycin (mTOR), and ERK1/2 signaling pathways, which were important pro-survival signaling pathways for neurons. Together, minocycline may attenuate ethanol-induced damage to the developing spinal cord by inhibiting microglial activation/neuroinflammation and restoring the pro-survival signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app