Add like
Add dislike
Add to saved papers

Aspergillus fumigatus branching complexity in vitro: 2D images and dynamic modeling.

BACKGROUND: Aspergillus fumigatus causes serious infections in humans, and its virulence correlates with hyphal growth, branching and formation of the filamentous mycelium. The filamentous mycelium is a complex structure inconvenient for quantity analysis. In this study, we monitored the branching of A. fumigatus filamentous mycelium in vitro at different points in time in order to assess the complexity degree and develop a dynamic model for the branching complexity.

METHOD: We used fractal analysis of microscopic images (FAMI) to measure the fractal dimensions (D) of the branching complexity within 24 h of incubation.

RESULTS: By photographing the filamentous mycelium dynamically and processing the images, the D variation curve of A. fumigatus complexity degree was obtained. We acquired the D variation curve which contained initial exponential period and stationary period of A. fumigatus branching. Further, the obtained data of D was modeled via the logistic model (LM) to develop a dynamic model of A. fumigatus branching for the prediction of the specific growth rate of branching value (0.23 h-1 ).

CONCLUSIONS: Developed FAMI and LM models present a simple and non-destructive method of predicting the evolution of branching complexity of A. fumigatus. These models are useful as laboratory measurements for the prediction of hyphal and mycelium development, especially relevant to the pathogenesis study of aspergillosis, as well as pathogenesis of other diseases caused by moulds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app