Add like
Add dislike
Add to saved papers

Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke.

Experimental Neurology 2018 December 5
Stem cells hold great promise as a regenerative therapy for ischemic stroke by improving functional outcomes in animal models. However, there are some limitations regarding the cell transplantation, including low rate of survival and differentiation. Repetitive transcranial magnetic stimulation (rTMS) has been widely used in clinical trials as post-stroke rehabilitation in ischemic stroke and has shown to alleviate functional deficits following stroke. The present study was designed to evaluate the therapeutic effects and mechanisms of combined human neural stem cells (hNSCs) with rTMS in a middle cerebral artery occlusion (MCAO) rat model. The results showed that human embryonic stem cells (hESCs) were successfully differentiated into forebrain hNSCs for transplantation and hNSCs transplantation combined with rTMS could accelerate the functional recovery after ischemic stroke in rats. Furthermore, this combination not only significantly enhanced neurogenesis and the protein levels of brain-derived neurotrophic factor (BDNF), but also rTMS promoted the neural differentiation of hNSCs. Our findings are presented for the first time to evaluate therapeutic benefits of combined hNSCs and rTMS for functional recovery after ischemic stroke, and indicated that the combination of hNSCs with rTMS might be a potential novel therapeutic target for the treatment of stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app