Add like
Add dislike
Add to saved papers

Antrodia salmonea suppresses invasion and metastasis in triple-negative breast cancer cells by reversing EMT through the NF-κB and Wnt/β-catenin signaling pathway.

Antrodia salmonea (AS), a fungus that is indigenous to Taiwan has been well known for its anti-cancer properties. We investigated the anti-metastatic and anti-epithelial-mesenchymal transition (EMT) properties of AS in TNBC cells. To determine their EMT and metastasis levels, in vitro wound healing, wound invasion, Western blotting, RT-PCR, luciferase activity and immunofluorescence assays were performed, while the in vivo anti-metastatic efficacy of AS was evaluated in BALB/c-nu mice through bioluminescence imaging, HE staining, and immunohistochemical staining. MDA-MB-231 cells, when treated with AS concentrations (25-100 μg/mL) resulted in significant reduction of invasion and migration as well as the downregulation of VEGF, uPAR, uPA and MMP-9 (inhibition of PI3K/AKT/NFκB pathways). AS treatment prevented morphological changes and reversed EMT through the upregulation of E-cadherin and the downregulation of N-cadherin, Slug, Twist, and Vimentin. Inhibition of Smad3 signaling pathway, downregulation of β-catenin pathway and upregulation of GSK3β expression were also observed while, suppression of metastasis and EMT in TGF-β1-stimulated non-tumorigenic MCF-10A cells was observed when treated with AS. Histological analysis confirmed that AS reduced tumor metastasis and upregulated E-cadherin expression in biopsied lung tissues. Our results indicated that AS exhibits anti-EMT and anti-metastatic activity, that could contribute to develop anticancer drugs against TNBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app