Add like
Add dislike
Add to saved papers

Claudin-7 downregulation induces metastasis and invasion in colorectal cancer via the promotion of epithelial-mesenchymal transition.

The dysregulation of the tight junctions (TJs) protein claudin-7 is closely related to the development and metastasis of colorectal cancer (CRC). The aim of this study was to investigate the expression of claudin-7 and characterize the relationship between claudin-7 expression and epithelial-mesenchymal transition (EMT) in CRC. In this study, the expression of claudin-7, E-cadherin, vimentin and snail-1 was detected by immunohistochemistry (IHC) in a set of 80 CRC specimens comprising 20 specimens each of well-differentiated, moderately differentiated, poorly differentiated and liver metastases tissues. The correlation between claudin-7 and EMT-related proteins in the stably transfected claudin-7 knockdown HCT116 cell line was analyzed by IHC, immunofluorescence (IF), Western blotting (WB) and nude mouse xenograft models. The results revealed that the expression of claudin-7 was downregulated as CRC tissue differentiation grade decreased, and that low claudin-7 expression corresponded to the downregulation of E-cadherin (r = 0.725, p < 0.001) and upregulation of vimentin (r = -0.376, p = 0.001) and snail-1 (r = -0.599, p < 0.001). Additionally, in the claudin-7 knockdown HCT116 cell line, the staining intensity and expression of E-cadherin was decreased, while the immunoreactivity and expression of vimentin and snail-1 was increased. Futhermore, the result of tumor formation experiment was consistent with CRC tissues. In conclusion, the expression of claudin-7 in CRC is downregulated as differentiation grade decreases. Claudin-7 downregulation may promote the invasion and metastasis of CRC by regulating EMT. Our results provide new perspectives for a potential therapeutic target for CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app