Add like
Add dislike
Add to saved papers

Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports.

Rod-like, hexagonal and fiber-like SBA-15 mesoporous silicas were synthesized to support MnOx for toluene oxidation. This study showed that the morphology of the supports greatly influenced the catalytic activity in toluene oxidation. MnOx supported on rod-like SBA-15 (R-SBA-15) displayed the best catalytic activity and the conversion at 230°C reached more than 90%, which was higher than the other two catalysts. MnOx species consisted of coexisting MnO2 and Mn2 O3 on the three kinds of SBA-15 samples. Large amounts of Mn2 O3 species were formed on the surface and high oxygen mobility was obtained on MnOx supported on R-SBA-15, according to the H2 temperature programmed reduction (H2 -TPR) and X-ray photoelectron spectroscopy (XPS) results. The Mn/R-SBA-15 catalyst with greater amounts of Mn2 O3 species possessed a large amount of surface lattice oxygen, which accelerated the catalytic reaction rate. Therefore, the surface lattice oxygen and high oxygen mobility were critical factors on the catalytic activity of the Mn/R-SBA-15 catalyst.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app