Add like
Add dislike
Add to saved papers

Temporally local recurrent radial basis function network for modeling and adaptive control of nonlinear systems.

ISA Transactions 2018 December 5
In this paper, a novel temporally local recurrent radial basis function network for modeling and adaptive control of nonlinear systems is proposed. The proposed structure consists of recurrent hidden neurons having weighted self-feedback loops and a weighted linear feed-through from the input layer directly to the output layer neuron(s). The dynamic back-propagation algorithm is developed and used for updating the parameters of the proposed structure. To improve the performance of learning algorithm, discrete Lyapunov stability method is used to develop an adaptive learning rate scheme. This scheme ensures the faster convergence of the parameters and maintains the stability of the system. A total of 5 complex nonlinear systems are used to test and compare the performance of the proposed network with other neural network structures. The disturbance rejection tests are also carried out to check whether the proposed scheme is able to handle the external disturbance/noise signals effects or not. The obtained results show the efficacy of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app