Add like
Add dislike
Add to saved papers

Minimum Detectable Changes Associated with Tissue Dielectric Constant Measurements as Applicable to Assessing Lymphedema Status.

BACKGROUND: Tissue dielectric constant (TDC) measurements are increasingly being used as a tool to help characterize lymphedema features, detect its presence, and assess treatment related changes. Although the underlying physics of this technology has been well described in the literature, there has been little systematic study of in vivo reliability aspects. A central unanswered question is the minimal detectable change (MDC) that, with a given level of confidence, may be ascribed to this technology. Our goal was to address this issue using test-retest measurements from which intraclass correlations coefficients (ICC) and MDC could be estimated.

METHODS AND RESULTS: Forty volunteers (20 females) aged 19-61 years with body mass indices of 14.7-47 kg/m2 and body fat percentages of 12.0%-48.9% were evaluated. Two measurers (M1 and M2) used two different TDC measuring devices (multiprobe and compact) to measure TDC in triplicate sequentially and bilaterally at three locations; anterior forearm, hand palmar mid-thenar eminence, and dorsum mid-web. These measurements were made by each measurer twice constituting test-retest values (T1 and T2). From these measurements ICC2,1 and MDC at 95% confidence were determined for each site and probe for absolute TDC values and for inter-side ratios. MDC values for absolute TDC ranged from 2 to 9 TDC units, and for inter-side ratios ranged from 5.3% to 8.0% depending on site and probe. ICC2,1 values ranged from 0.765 to 0.982.

CONCLUSIONS: The MDC values herein documented may be used to provide guidance to aid interpretation of measured TDC changes or differences in a clinical environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app