Add like
Add dislike
Add to saved papers

A Well-Controlled BioID Design for Endogenous Bait Proteins.

The CRISPR/Cas9 revolution is profoundly changing the way life sciences technologies are used. Many assays now rely on engineered clonal cell lines to eliminate the overexpression of bait proteins. Control cell lines are typically nonengineered cells or engineered clones, implying a considerable risk for artifacts because of clonal variation. Genome engineering can also transform BioID, a proximity labeling method that relies on fusing a bait protein to a promiscuous biotin ligase, BirA*, resulting in the tagging of vicinal proteins. We here propose an innovative design to enable BioID for endogenous proteins wherein we introduce a T2A-BirA* module at the C-terminus of endogenous p53 by genome engineering, leading to bicistronic expression of both p53 and BirA* under control of the endogenous promoter. By targeting a Cas9-cytidine deaminase base editor to the T2A autocleavage site, we can efficiently derive an isogenic population expressing a functional p53-BirA* fusion protein. Using quantitative proteomics we show significant benefits over the classical ectopic expression of p53-BirA*, and we provide a first well-controlled view of the proximal proteins of endogenous p53 in colon carcinoma cells. This novel application for base editors expands the CRISPR/Cas9 toolbox and can be a valuable addition for synthetic biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app