Add like
Add dislike
Add to saved papers

Cytotoxicity and DNA Damage Caused from Diazinon Exposure by Inhibiting the PI3K-AKT Pathway in Porcine Ovarian Granulosa Cells.

Organophosphorus insecticide diazinon (DZN) is diffusely used in agriculture, home gardening, and crop peats. Much work so far has focused on the link between DZN exposure and the occurrence of neurological diseases, while little is known on the reproductive toxicological assessment on DZN exposure. This research aimed to investigate the underlying mechanisms of toxic hazards for DZN exposure on cultured porcine ovarian granulosa cells. We analyzed the oxidative stress, energy metabolism, DNA damage, apoptosis, and autophagy by using high-throughput RNA-seq, immunofluorescence, Western blotting, and real-time PCR. The combined data demonstrated that DZN exposure could cause excessive ROS and DNA damage, which induced apoptosis and autophagy by inhibiting the PI3K-AKT pathway. The down-regulated CYP19A1 protein and granulosa cell deaths increase the risk for developing premature ovarian failure and follicular atresia. In conclusion, DZN exposure has obvious reproductive toxicity by induction of granulosa cell death through pathways connected to DNA damage and oxidative stress by inhibiting the PI3K-AKT pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app