Add like
Add dislike
Add to saved papers

Structure-Selective Synthesis of Wurtzite and Zincblende ZnS, CdS, and CuInS 2 Using Nanoparticle Cation Exchange Reactions.

Inorganic Chemistry 2018 December 8
For polymorphic solid-state systems containing multiple distinct crystal structures of the same composition, identifying rational pathways to selectively target one particular structure is an important synthetic capability. Cation exchange reactions can transform a growing library of metal chalcogenide nanocrystals into different phases by replacing the cation sublattice, often while retaining morphology and crystal structure. However, only a few examples have been demonstrated where multiple distinct phases in a polymorphic system could be selectively accessed using nanocrystal cation exchange reactions. Here, we show that roxbyite (hexagonal) and digenite (cubic) Cu2- x S nanoparticles transform upon cation exchange with Cd2+ , Zn2+ , and In3+ to wurtzite (hexagonal) and zincblende (cubic) CdS, ZnS, and CuInS2 , respectively. These products retain the anion and cation sublattice features programmed into the copper sulfide template, and each phase forms to the exclusion of other known crystal structures. These results significantly expand the scope of structure-selective cation exchange reactions in polymorphic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app