Add like
Add dislike
Add to saved papers

Real-time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites using Transparent Carbon Ultramicroelectrode Arrays.

ACS Sensors 2018 December 11
Here, we use a recently developed electrochemical sensing platform of transparent carbon ultramicroelectrode arrays (T-CUAs) for the in vitro detection of phenazine metabolites from the opportunistic human pathogen Pseudomonas aeruginosa. Specifically, redox-active metabolites pyocyanin (PYO), 5-methylphenazine-1-carboxylic acid (5-MCA) and 1-hydroxyphenazine (OHPHZ) are produced by P. aeruginosa, which is commonly found in chronic wound infections and in the lungs of cystic fibrosis patients. As highly diffusible chemicals, PYO and other metabolites are extremely toxic to surrounding host cells and other competing microorganisms, thus their detection is of great importance as it could provide insights regarding P. aeruginosa virulence mechanisms. Phenazine metabolites are known to play important roles in cellular functions, however, very little is known about how their concentrations fluctuate and influence cellular behaviors over the course of infection and growth. Herein we report the use of easily assembled, low-cost electrochemical sensors that provide rapid response times, enhanced sensitivity and high reproducibility. As such, these T-CUAs enable real-time electrochemical monitoring of PYO and another extremely reactive and distinct redox-active phenazine metabolite, 5-methylphenazine-1-carboxylic acid (5-MCA), from a highly virulent laboratory P. aeruginosa strain, PA14. In addition to quantifying phenazine metabolite concentrations, changes in phenazine dynamics are observed in the biosynthetic route for the production of PYO. Our quantitative results, over a 48-hour period, show increasing PYO concentrations during the first 21 hours of bacterial growth, after which PYO levels plateau and then slightly decrease. Additionally, we explore environmental effects on phenazine dynamics and PYO concentrations in two growth media, tryptic soy broth (TSB) and lysogeny broth (LB). The maximum concentrations of cellular PYO were determined to be 190 ± 5 µM and 150 ± 1 µM in TSB and LB, respectively. Finally, using desorption electrospray ionization (DESI) and nano-electrospray ionization (nano-ESI) mass spectrometry we confirm the detection and identification of reactive phenazine metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app