Add like
Add dislike
Add to saved papers

Passivation of the grain boundaries of CH 3 NH 3 PbI 3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability.

Nanoscale 2018 December 8
Organic-inorganic hybrid perovskites are prone to defect formation due to iodine and methylamine ion/defect migration, leading to the formation of lots of defects at the perovskite surface and grain boundaries. Passivation of the defects is an effective method to improve the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). To achieve stable passivation, the interaction between the perovskite and additive materials should be taken into consideration. In this work, we for the first time introduced carbon quantum dots (CQDs) as an additive for the stabilization of MAPbI3 via passivation of the grain boundaries of the perovskite. Because the carboxylic groups, hydroxyl groups and amino-groups on the edge of CQDs can bond with the uncoordinated Pb in MAPbI3, strong and stable interactions between the perovskite and CQDs can be generated, inducing a lower trap-state density and better optoelectronic properties. The typical PCE of the PSCs based on CQD modified MAPbI3 films increases from 17.59% to 18.81% and the PCE of the optimized champion PSCs reaches 19.38%. Furthermore, the hydrophobic CQD molecules can block the contact between water and MAPbI3, and even if the CQD modified perovskite is kept under ambient atmosphere without controlling the humidity for 4 months, the MAPbI3 film still retained its original black color.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app