Add like
Add dislike
Add to saved papers

Antigen-specificity and DTIC before peptide-vaccination differently shape immune-checkpoint expression pattern, anti-tumor functionality and TCR repertoire in melanoma patients.

We have recently described that DNA-damage inducing drug DTIC, administered before peptide (Melan-A and gp100)-vaccination, improves anti-tumor CD8+ Melan-A-specific T-cell functionality, enlarges the Melan-A+ TCR repertoire and impacts the overall survival of melanoma patients. To identify whether the two Ags employed in the vaccination differently shape the anti-tumor response, herein we have carried out a detailed analysis of phenotype, anti-tumor functionality and TCR repertoire in treatment-driven gp100-specific CD8+ T cells, in the same patients previously analyzed for Melan-A. We found that T-cell clones isolated from patients treated with vaccination alone possessed an Early/intermediate differentiated phenotype, whereas T cells isolated after DTIC plus vaccination were late-differentiated. Sequencing analysis of the TCRBV chains of 29 treatment-driven gp100-specific CD8+ T-cell clones revealed an oligoclonal TCR repertoire irrespective of the treatment schedule. The high anti-tumor activity observed in T cells isolated after chemo-immunotherapy was associated with low PD-1 expression. Differently, T-cell clones isolated after peptide-vaccination alone expressed a high level of PD-1, along with LAG-3 and TIM-3, and were neither tumor-reactive nor polyfunctional. Blockade of PD-1 reversed gp100-specific CD8+ T-cell dysfunctionality, confirming the direct role of this co-inhibitory molecule in suppressing anti-tumor activity, differently from what we have previously observed for Melan-A+ CD8+ T cells, expressing PD-1 but highly functional. These findings indicate that the functional advantage induced by combined chemo-immunotherapy is determined by the tumor antigen nature, T-cell immune-checkpoints phenotype, TCR repertoire diversity and anti-tumor T-cell quality and highlights the importance of integrating these parameters to develop effective immunotherapeutic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app