Add like
Add dislike
Add to saved papers

The reproducibility of cardiac magnetic resonance imaging measures of aortic stiffness and their relationship to cardiac structure in prevalent haemodialysis patients.

Background: Aortic stiffness is one of the earliest signs of cardiovascular disease (CVD) in patients with chronic kidney disease and an independent predictor of mortality. It is thought to drive left ventricular (LV) remodelling, an established biomarker for mortality. The relationship between direct and indirect measures of aortic stiffness and LV remodelling is not defined in dialysis patients, nor are the reproducibility of methods used to assess aortic stiffness using cardiac magnetic resonance (CMR) imaging.

Methods: Using 3T CMR, we report the results of (i) the interstudy, interobserver and intra-observer reproducibility of ascending aortic distensibility (AAD), descending aortic distensibility (DAD) and aortic pulse wave velocity (aPWV) in 10 haemodialysis (HD) patients and (ii) the relationship between AAD, DAD and aPWV and LV mass index (LVMi) and LV remodelling in 70 HD patients.

Results: Inter- and intra-observer variability of AAD, DAD and aPWV were excellent [intraclass correlation (ICC) > 0.9 for all]. Interstudy reproducibility of AAD was excellent {ICC 0.94 [95% confidence interval (CI) 0.78-0.99]}, but poor for DAD and aPWV [ICC 0.51 (-0.13-0.85) and 0.51 (-0.31-0.89)]. AAD, DAD and aPWV associated with LVMi on univariate analysis (β = -0.244, P = 0.04; β =-0.315, P < 0.001 and β = 0.242, P = 0.04, respectively). Only systolic blood pressure, serum phosphate and a history of CVD remained independent determinants of LVMi on multivariable linear regression.

Conclusions: AAD is the most reproducible CMR-derived measure of aortic stiffness in HD patients. CMR-derived measures of aortic stiffness were not independent determinants of LVMi in HD patients. Whether one should target blood pressure over aortic stiffness to mitigate cardiovascular risk still needs determination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app