COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Mistletoe Versus Host Pine: Does Increased Parasite Load Alter the Host Chemical Profile?

Stress caused by parasitic plants, e.g. mistletoes, alters certain host-plant traits as a response. While several physical implications of the parasite-host relation have been well studied, shifts in the host chemical profile remain poorly understood. Here we compare the chemical profiles of mistletoe (Viscum album subsp. austriacum) leaves and host pine (Pinus nigra subsp. salzmannii) needles and we investigate chemical changes in host needles of trees with different parasite loads (control, low, medium, and high). Our results reveal that despite the intimate contact between mistletoe and host pine, their chemical profiles differed significantly, revealing extremely low concentrations of defense compounds (including a complete lack of terpenes) and high levels of N concentrations in mistletoe leaves. On the other hand, parasitized pines showed unique chemical responses depending on parasite loads. Overall, the content in monoterpenes increased with parasitism. Higher parasitized pines produced higher amounts of defense compounds (phenols and condensed tannins) than less parasitized trees, but amounts in samples of the same year did not significantly differ between parasitized and unparasitized pines. Highly parasitized pines accumulated less N than pines with other parasite loads. The strongest response was found in sesqui- and diterpenes, which were at lower levels in pines under medium and high parasitism. Chemical responses of pines to mistletoe parasitism resembled reactions to other kinds of stress. Low levels induced reactions resembling those against drought stress, while medium and high parasitism elicited responses comparable to those against burning and defoliation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app