Add like
Add dislike
Add to saved papers

ZmAPRG, an uncharacterized gene, enhances acid phosphatase activity and Pi concentration in maize leaf during phosphate starvation.

KEY MESSAGE: An uncharacterized gene, ZmAPRG, isolated by map-based cloning, enhances acid phosphatase activity and phosphate concentration in maize leaf during phosphate starvation. Acid phosphatase (APase) plays important roles in the absorption and utilization of phosphate (Pi) during maize growth. The information on genes regulating the acid phosphatase activity (APA) in maize leaves remains obscured. In a previous study, we delimited the quantitative trait locus, QTL-AP9 for APA to a region of about 546 kb. Here, we demonstrate that the GRMZM2G041022 located in the 546 kb region is a novel acid phosphatase-regulating gene (ZmAPRG). Its overexpression significantly increased the APA and Pi concentration in maize and rice leaves. Subcellular localization of ZmAPRG showed that it was anchored on the plasma and nuclear membrane. The transcriptome analysis of maize ZmAPRG overexpressing lines (ZmAPRG OE) revealed 1287 up-regulated and 392 down-regulated genes. Among these, we found APase, protein phosphatase, and phosphate transporter genes, which are known to be implicated in the metabolism and utilization of Pi. We inferred the ZmAPRG functions as an upstream regulation node, directly or indirectly regulating APases, protein phosphatases, and phosphate transporter genes involved in Pi metabolism and utilization in maize. These findings will pave the way for elucidating the mechanism of APase regulation, absorption and utilization of Pi, and would facilitate maize breeding for efficient use of fertilizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app