Add like
Add dislike
Add to saved papers

An integrated quantitative proteomic and metabolomics approach to reveal the negative regulation mechanism of LamB in antibiotics resistance.

Journal of Proteomics 2018 December 4
Previously, a maltose-specific channel porin, LamB was found to be associate with multi-drug resistance in a lamB deleted strain, but the exact mechanisms require further elucidation. Herein, differential protein expression between the Escherichia coli mutant strain ΔlamB and the wild type strain BW25113, with and without ciprofloxacin (CFLX), was identified using iTRAQ based liquid chromatography-tandem mass spectrometry (LC-MS/MS); while differential metabolite expression was examined using gas chromatography-mass spectrometry (GC-MS). Further Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that lamB deletion leads to a decrease in several key metabolic pathways such as tricarboxylic acid (TCA) cycle, pentose phosphate pathway and glycolysis/gluconeogenesis. When examining the ΔlamB strain without CFLX, many aminoacyl-tRNA biosynthesis and pyrimidine metabolism-related proteins were unaltered, but the addition of CFLX resulted in reduced levels. These findings indicate that a lamB deletion may confer antibiotic resistance by relieving the pressure of protein translation and DNA replication. To further examine antibiotic resistance, exogenous metabolites, including maltose, and several amino acids metabolites were evaluated to determine whether the resistance level could be reduced in the presence of CFLX. The obtained results indicate that lamB knockout may increase bacterial antibiotics resistance by decreasing metabolic pathway activity levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app