Add like
Add dislike
Add to saved papers

Feasibility of the annulus fibrosus repair with in situ gelating hydrogels - A biomechanical study.

The surgical standard of care for lumbar discectomy leaves the annulus fibrosus (AF) defect unrepaired, despite considerable risk for a recurrent herniation. Identification of a viable defect repair strategy has until now been elusive. The scope of this ex vivo biomechanical study was to evaluate crosslinking hydrogels as potentially promising AF defect sealants, and provide a baseline for their use in combination with collagen scaffolds that restore disc volume. This study directly compared genipin crosslinked fibrin hydrogel (FibGen) as a promising preclinical candidate against a clinically available adhesive composed of glutaraldehyde and albumin (BioGlue). Forty-two bovine coccygeal functional spine units (FSU) were randomly allocated into four groups, namely untreated (control, n = 12), repaired with either one of the tested hydrogels (BioGlue, n = 12; FibGen, n = 12), or FibGen used in combination with a collagen hydrogel scaffold (FibGen+Scaffold, n = 6). All specimens underwent a moderate mechanical testing protocol in intact, injured and repaired states. After completion of the moderate testing protocol, the samples underwent a ramp-to-failure test. Lumbar discectomy destabilized the FSU as quantified by increased torsional range of motion (28.0° (19.1, 45.1) vs. 41.39° (27.3, 84.9), p<0.001), torsional neutral zone (3.1° (1.2, 7.7) vs. 4.8° (2.1, 12.1), Z = -3.49, p < 0.001), hysteresis(24.4 J (12.8, 76.0) vs. 27.6 J (16.4, 54.4), Z = -2.61, p = 0.009), with loss of both disc height (7.0 mm (5.0, 10.5) vs 6.1 mm (4.0, 9.3), Z = -5.16, p < 0.001) and torsional stiffness (0.76 Nmdeg-1 (0.38, 1.07) vs. 0.66 Nmdeg-1 (0.38, 0.97), Z = -3.98, p < 0.001). Most FibGen repaired AF endured the entire testing procedure whereas only a minority of BioGlue repaired AF and all FibGen+Scaffold repaired AF failed (6/10 vs. 3/12 vs. 0/6 respectively, p = 0.041). Both BioGlue and FibGen+Scaffold repaired AF partially restored disc height (0.47 mm (0.07, 2.41), p = 0.048 and 1.52 mm (0.41, 2.57), p = 0.021 respectively) compared to sham treatment (0.08 mm (-0.63, 0.88)) whereas FibGen-only repaired AF had no such effect (0.04 mm (-0.73, 1.13), U = 48.0, p = 1). The AF injury model demonstrated considerable change of FSU mechanics that could be partially restored by use of an AF sealant. While inclusion of a volumetric collagen scaffold led to repair failure, use of FibGen alone demonstrated clinically relevant promise for prevention of mechanical reherniation, outperforming an FDA approved sealant in this ex vivo test series.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app