Add like
Add dislike
Add to saved papers

First-Principles Calculation of Third-Order Elastic Constants via Numerical Differentiation of the Second Piola-Kirchhoff Stress Tensor.

Physical Review Letters 2018 November 24
A general method is presented to calculate from first principles the full set of third-order elastic constants of a material of arbitrary symmetry. The method here illustrated relies on a plane-wave density functional theory scheme to calculate the Cauchy stress and the numerical differentiation of the second Piola-Kirchhoff stress tensor to evaluate the elastic constants. It is shown that finite difference formulas lead to a cancellation of the finite basis set errors, whereas simple solutions are proposed to eliminate numerical errors arising from the use of Fourier interpolation techniques. Applications to diamond, silicon, aluminum, magnesium, graphene, and a graphane conformer give results in excellent agreement with both experiments and previous calculations based on fitting energy density curves, demonstrating both the accuracy and generality of our new methodology to investigate nonlinear elastic behaviors of materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app