Add like
Add dislike
Add to saved papers

Assessment of toxicity and oxidative DNA damage of sodium hypochlorite, chitosan and propolis on fibroblast cells.

Brazilian Oral Research 2018 November 30
The objective of this study was to evaluate and compare the cytotoxicity and genotoxicity on human fibroblast cell lines of sodium hypochlorite (NaOCl), chitosan and propolis as root canal irrigating solutions. Human fibroblast cells were exposed to chitosan, propolis and NaOCl for 4 and 24 h. Cell viability was assessed by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, and oxidative DNA damage was assessed by determination of 8-hydroxydeoxyguanosine (8-OHdG) level with an ELISA kit. The data of cell cytotoxicity were analysed statistically using a test of one-way analysis of variance at a significance level of p < 0.05. In the NaOCI group, the 8-OHdG level was higher than in the chitosan group, but there was no statistical difference when compared with the other groups (p < 0.05). It was determined that the irrigation solutions were cytotoxic, depending on the dose and time. NaOCl was the most toxic solution after both 4 and 24 h of exposure (p < 0.05). Chitosan and propolis may be alternatives to NaOCl for irrigation solutions, because they are both less toxic and produce less oxidative DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app