Add like
Add dislike
Add to saved papers

Fluoxetine reverses brain radiation and temozolomide-induced anxiety and spatial learning and memory defect in mice.

Radiation therapy and concomitant temozolomide chemotherapy are commonly used in treatment of brain tumors, but they may also result in behavioral impairments such as anxiety and cognitive deficit. The present study sought to investigate the effect of fluoxetine on the behavioral impairments caused by radiation and temozolomide treatment. C57BL/6J mice were subjected to a single cranial radiation followed by 6-week cyclic temozolomide administration, and then treated with chronic administration of fluoxetine. Behavioral tests were carried out to determine the anxiety-like behavior and cognition function of these animals. Long-term potentiation (LTP) in the hippocampus was measured by electrophysiology and neurogenesis in the dentate gyrus was evaluated by immunohistochemistry. Mice treated with radiation and temozolomide showed increased anxiety-like behavior and cognitive impairment, along with LTP impairment and neurogenesis deficit. Chronic fluoxetine administration could reverse the behavioral dysfunction, enhance LTP and increase neurogenesis in the hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app