Add like
Add dislike
Add to saved papers

Concept and Development of Framework Nucleic Acids.

The blooming field of structural DNA nanotechnology harnessing the material properties of nucleic acids has attracted widespread interest. The exploitation of the precise and programmable Watson-Crick base pairing of DNA or RNA has led to the development of exquisite nucleic acid nanostructures from one to three dimensions. The advances of computer-aided tools facilitate automated design of DNA nanostructures with various sizes and shapes. Especially, the construction of shell or skeleton DNA frameworks, or more recently dubbed 'Framework Nucleic Acids' (FNAs) provides a means to organize molecules or nanoparticles with nanometer precision. The intrinsic biological properties and tailorable functionalities of FNAs hold great promise for physical, chemical, and biological applications. This perspective highlights state-of-the-art design and construction, of precisely assembled FNAs, and outlines the challenges and opportunities for exploiting the structural potential of FNAs for translational applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app