Add like
Add dislike
Add to saved papers

N-Doped C@Zn 3 B 2 O 6 as a Low Cost and Environmentally Friendly Anode Material for Na-Ion Batteries: High Performance and New Reaction Mechanism.

Advanced Materials 2018 December 6
Na-ion batteries (NIBs) are ideal candidates for solving the problem of large-scale energy storage, due to the worldwide sodium resource, but the efforts in exploring and synthesizing low-cost and eco-friendly anode materials with convenient technologies and low-cost raw materials are still insufficient. Herein, with the assistance of a simple calcination method and common raw materials, the environmentally friendly and nontoxic N-doped C@Zn3 B2 O6 composite is directly synthesized and proved to be a potential anode material for NIBs. The composite demonstrates a high reversible charge capacity of 446.2 mAh g-1 and a safe and suitable average voltage of 0.69 V, together with application potential in full cells (discharge capacity of 98.4 mAh g-1 and long cycle performance of 300 cycles at 1000 mA g-1 ). In addition, the sodium-ion storage mechanism of N-doped C@Zn3 B2 O6 is subsequently studied through air-insulated ex situ characterizations of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FT-IR) spectroscopy, and is found to be rather different from previous reports on borate anode materials for NIBs and lithium-ion batteries. The reaction mechanism is deduced and proposed as: Zn3 B2 O6 + 6Na+ + 6e- ⇋ 3Zn + B2 O3 ∙ 3Na2 O, which indicates that the generated boracic phase is electrochemically active and participates in the later discharge/charge progress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app