Add like
Add dislike
Add to saved papers

Rational Design of an Amphiphilic Coordination Cage-based Emulsifier.

Self-assembled, porous coordination cages with a functional interior find application in controlled guest inclu-sion/release, drug delivery, separation processes, and catalysis. However, only few studies exist that describe their utilization for the development of self-assembled materials based on their 3-dimensional shape and external functional-ization. Here, dodecyl chain-containing, acridone-based ligands (LA) and shape-complementary phenanthrene-derived ligands (LB) are shown to self-assemble to heteroleptic coordination cages cis-[Pd2(LA)2(LB)2]4+ acting as a gemini amphiphile (CGA-1; Cage-based Gemini Amphiphile-1). Owing to their anisotropic decoration with short polar and long non-polar side chains, the cationic cages were found to assemble into vesicles with diameters larger than 100 nm in suitable polar solvents, visualized by cryo-TEM and Liquid-Cell Transmission Electron Microscopy (LC-TEM). LC-TEM reveals that these vesicles aggregate into chains and necklaces via long-range interac-tions. In addition, the cages show a rarely described ability to stabilize oil-in-oil emulsions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app