Add like
Add dislike
Add to saved papers

The Effect of Crystal Grain Orientation on the Rate of Ionic Transport in Perovskite Polycrystalline Thin Films.

In this work, we examine the effect of microstructure on ion migration induced photoluminescence (PL) quenching in methylammonium lead iodide perovskite films. Thin films were fabricated by two methods: spin-coating, which results in randomly oriented perovskite grains, and zone-casting, which results in aligned grains. As an external bias is applied to these films, migration of ions causes a quenching of the PL signal in the vicinity of the anode. The evolution of this PL-quenched zone is less uniform in the spin-coated devices than in the zone-cast ones, suggesting that the relative orientation of the crystal grains plays a significant role in the migration of ions within polycrystalline perovskite. We simulate this effect via a simple Ising model of ionic motion across grains in the perovskite thin film. The results of this simulation align closely with the observed experimental results, further solidifying the correlation between crystal grain orientation and the rate of ionic transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app