Add like
Add dislike
Add to saved papers

Temporal clustering of extreme climate events drives a regime shift in rocky intertidal biofilms.

Ecology 2018 December 6
Research on regime shifts has focused primarily on how changes in the intensity and duration of press disturbances precipitate natural systems into undesirable, alternative states. By contrast, the role of recurrent pulse perturbations, such as extreme climatic events, has been largely neglected, hindering our understanding of how historical processes regulate the onset of a regime shift. We performed field manipulations to evaluate whether combinations of extreme events of temperature and sediment deposition that differed in their degree of temporal clustering generated alternative states in rocky intertidal epilithic microphytobenthos (biofilms) on rocky shores. The likelihood of biofilms to shift from a vegetated to a bare state depended on the degree of temporal clustering of events, with biofilm biomass showing both states under a regime of non-clustered (60 days apart) perturbations while collapsing in the clustered (15 days apart) scenario. Our results indicate that time since the last perturbation can be an important predictor of collapse in systems exhibiting alternative states and that consideration of historical effects in studies of regime shifts may largely improve our understanding of ecosystem dynamics under climate change. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app